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ABSTRACT
Process Control application engineering would be substantially less expensive if supported with

readable self-documentation. An important advance would be models and languages designed to more
clearly represent application Intent (as formalized herein), without the usual implementation obscurity.
This paper analyzes how Intent, in the sense later defined, can be usefully defined and expressed.
Process Control has traditionally been defined in terms of a number of automation levels. This supports
the intended Intent concept in one way, defining the implementation of higher application goals in terms
of lower level ones. But a different, even more useful model is the leveling of physical sciences where
each level of problem is best addressed by an appropriate kind of theory, itself dependent on lower level
theories. Each theory must be proved by more fundamental theories even though those theories are much
too complex to address the higher level problem directly. But more than leveling is needed. At each
application level, the associated language should support concepts that make its normal usages clear. It
should ensure that appropriate application practices can be expressed transparently in terms of their
Intent. It should allow the engineer to clearly relate the result to the expected implementation, allowing
him full control over the application. The paper will expand on prior papers to show more generally how
these concepts can be developed.

INTRODUCTION
This paper discusses the problem of programming and documenting complex control systems so that

any reader, normally familiar with the process, can pick up the design and understand it directly. This is
a general issue in software systems, which has frustrated much process control application. Even our
best application models don’t always help as much as they should. The problem expresses itself in many
symptoms:

• While a page of English is easy to read for its literate users, a page of C language source code is much
harder to read for its experienced users.

• Despite our best intentions, large systems projects often create results completely unrelated to their
original intended goals.

                                                
1 Based on “Intent-Based Process Control Configuration Models” by E.H. Bristol, published in the proceedings of the ISA
TECH/1999, October 5-7, Philadelphia, PA”.
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• We try to make things simple and make them inflexible instead; we try to make things flexible and we
make them impossible to use.

• We try to make a system well structured and we make it cumbersome.

A key modern idea within modern computing technology is Information Modeling.[1]2 It fits with the
new ideas of Objects.3 It should be the basis of most of our broad systems and standards work, and yet
we still seem to be missing some dimension. On the face of it, Information Modeling is about modeling
particular systems. However, the Process Control problem is not just a single application which can be
modeled and explained once and for all but a broad family of applications, requiring a general model of
the shared aspects of the members of the family and the strategies for developing them.

The paper develops a concept that we will call Intent-Based Modeling. The notion is that a Process
Control system is made up of elements that are best described by their Intent (as formalized in the
following section), as seen at the application level and the domain in which they are defined. Each
domain exists in relation to other domains. As illustrated in Figure 1, these domains may exist in a
hierarchy (shown on the left), each depending on lower level domains to implement its Intents in terms
of the lower level concepts. Or they may include mutually supporting elements in parallel (shown on the
right).

Process control has often been discussed from a leveled point of view. But the physical sciences,
particularly physics, as in Figure 2, lend themselves to an organization, more like the intended Intent
structure. Typically each layer in the physical sciences is defined in an entirely independent, self-
consistent way. But the lower level sciences are used as the foundation to the higher level one, in such a
way that each level is formally proved within the next lower level. On the face of it, only the lowest level
is then necessary, but the higher level discourse would be completely incomprehensible if discussed
directly in terms of the lower level concepts. Issues or analyses, presented at the right level, become
clear, or at least manageable.

The subroutine hierarchy, of Figure 3, is similarly built by using subroutines in a lower level to
implement the higher level subroutines. The subroutine permits the reuse of lower level defined
functions. It also imposes a type discipline on the choice of data connections made to subroutine calls.
Objects extend this discipline and the earlier function block language capability to a data structure
environment with richer Object messages or connection type discipline. But none of these support the
specialized physical-science-like domains of internally consistent relationships of the kind that we need.

Figure 4 illustrates the way in which Objects can model a cascaded structure of process Controllers.
Objects can be designed to discipline the connections between controllers so that only controller inputs
could be cascaded from controller outputs. But more is needed. This discipline, like other typical
computer language disciplines, is only local in its impact. For example, it provides nothing to prevent a
cascade that loops back on itself, as illustrated, however absurd this is in practice. What is needed is a
more global kind of discipline, coupled to a statement of the structure or user intentions to be supported
at each level. Such a structure has many benefits:

• It supports easily understood application documentation.

                                                
2 Footnotes will be numbered, simply super-scripted, while references will be included super-scripted in brackets.
3 In the sense of Object Oriented Programming. The paper will capitalize terms, drawn from Standard English when these
terms, however suggestive, are taken in a specialized technical sense.
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• It unifies practice, encouraging the use of single, integrated, best-choice strategies for implementing
related Intents.

• It supports the coordination of related functions. The later discussion[2] shows how the same Intent
formalism could be used to generate both the controls and the related human interfacing GUI.

• Eventually, it supports true “artificially intelligent” control configuration, based not on magic, but on
the rational development of standard Intents with standard practices for implementing them.

This kind of formalism is easiest to see in the software domain. But because the different software
formalisms have no clear connection to what we would recognize as application issues, they cannot
reflect this kind of Intent. The author has proposed a process control language[3-5] that illustrates some
formalisms at the process control level, particularly for feedback control, from which the above
cascading example is drawn. Progress in development of higher level thinking about process control will
be measured by our ability to create such formalisms.

WHAT IS INTENT?
Intents of a control system are inherently developed in distinct application domains or layers, where a

set of goals in one domain is translated into goals in other more technical domains. Such a structure is
common place to a design planning discussion. But in order to be useful as a means of clarifying
standard discussions or application designs, it is necessary that each domain have an associated formal
practice of goals and constraints on the implementation of those goals. Further, the formalism at each
level requires at least an informal statement of the expected translation between its goals and the goals in
related domains.

What is not Intent?
The proposed concept of Intent is based on realistic engineering. In a control design, the Intent to

“Make Money at the Push of a Button” is either at too high a level to support a meaningful engineering
practice, or an appeal to Aladdin’s Lamp. The Intent to achieve 200% efficiency is ridiculous physics,
also not meaningful.

What is Intent?
Each relevant application domain should support a set of well-defined Intents having the following

characteristics:

• Each Intent has a name that can be directly understood by any normal reader of the application
documentation without any need to puzzle over what is meant when that Intent is invoked on
processing elements. In this respect the name reflects application Intent not computational form. It may
be necessary to have distinct Intent names for functions, whose implementations are similar, because
without them the Intent would be ambiguous. A well-selected name is crucial to clear control
documentation.

• Intents fit within a specialized notation or graphics, which expresses a generalized and internally
consistent set of relations between them. This formalization should enhance Intent visualization,
eliminating ambiguity. Ideally any notations should support tabular listing or similar naturally readable
forms without loss of flexibility.

• They reflect well-understood common practices.

• There are well-recognized strategies for implementing each Intent and relating it to the other
application domains when applied to the process elements.
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• The notation relationships reflect significant structural implications in the application domain well
enough to either prevent the expression of inappropriate application designs or make them obvious
(e.g. eliminating the Degree of Freedom loop in the earlier control diagram). These relationships and
strategies distinguish the implementation of an Intent from the conventional subroutine or Object.
Note: that the reflected relationships may be quite simple in themselves (like the rules in the mathematical notation below).
Their value is in clarifying and enforcing the proper behavior in the large number of cases occurring in the real application.

• The notation reflects the underlying implementation considerations well enough to support automatic
compiled implementation in which requirements derived from the Intent statement and obvious to the
engineer, need not be redundantly expressed in different system elements (e.g. in configuring both
control structure and operator interface).

INVENTING A NOTATION; ALGEBRAIC SYNTAX
The simplest familiar example of global structuring and syntax is the traditional algebraic equation. If

we did not already know of such a notation we would recognize that it would somehow be about
combining two algebraic quantities computationally. In this situation both the nature of the computation
and some separation of the arguments are needed. Making a symbol for the computation do double duty
makes sense: a+b. Of course, if the argument symbols are restricted to a single character, at least one of
the computations can be represented by an empty character: ax. Although there are a number of
equivalent standard notations, this usual one has a further advantage: It keeps the computational symbol
in the middle of the expression where it is most easily related to its arguments and remembered.

Figure 5 shows standard expressions. In its traditional presentation, algebra is developed progressively
to represent the following mathematical concepts (Intents):

• Linear expressions adding variables with weighting coefficients.

• Polynomials, also based on terms with coefficients.

• General expressions.

In this usage, the addition and subtraction operators are most frequently required (as lowest precedence
operators) combining other more complex terms. Parentheses can then be used to resolve more unusual
cases. This gives rise to the traditional operator precedence and form. The result is familiar to all as a
way, impossible with natural language, of easily capturing the underlying mathematics.

Figure 6 shows how the basic algebra has been extended in programming and programming
assignments. We can compare the readability of the algebra to its programming counterpart. (The short C
program converts a string of hexadecimal characters to their numeric equivalent.) The program adds
novel kinds of operator as well as the familiar control structures, and combines these in multiple lines.

But there are deeper reasons why the algebra is simpler, based on the kind of Intent based
representation developed in the paper:

• The simple alternation of the operands and of actual or implied operators.

• The equations each represent single independent ideas.

• Each deals with a single kind of real valued data.

• Each describes a simple computation in terms of its intended intermediate results, and the data from
which they are to be computed.

An experienced reader can recognize quickly whether a line of algebra is correct or meaningful, if he is
aware of the subject matter, as contrasted with the C program. This is not a reflection on C as a
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language. C is a general-purpose language intended to represent complex calculations about things
whose Intent is unrelated to the programming form. The program does not describe Intent but lower level
computation whose Intent is only remotely related to its use of algebra:

• The bottom line program assignment is like the mathematical equations, but it discusses numbers being
used to implement an internal form rather than some intentional view of the user’s (hexadecimal) data.

• The same is true, in a less direct way, for all of the other statements. They all represent an
implementation of lower level concepts that are intended to mix in ways determined by the user but not
tied to any predictable Intent that could be instantly recognized by an outside reader.4

• The program mixes a number of different representations for the data: A letter can stand for a variable
(c), or in single quotes (‘A’) for its numerical equivalent (which itself can be represented numerically
as well).

INTENTION MODELS OF CONTINUOUS CONTROL; IDIOMS
The best example of an Intent notation is based on the control Idiom.[3-5] As illustrated later, this is a

generalized control operator which:

• Is based on a standard continuous control role or Intent.5

• Computes control actions applied to output Variable targets from input and output Variable data.

• Derives target and state data attributes from the Variables implicitly, without formal attribute
connections. 6

• Recognizes control Degrees of Freedom paths, and path changes in the face of external failures or
imposed limitations and constraints.7

When automated, this structure would allow individual Idioms to function autonomously:

• Supporting the commands or target values that they received by deriving commands or target values to
be passed to their downstream Idioms.

• Recognizing any failures of the downstream Idioms to meet targets, adjusting its own operation to
accommodate in the best way possible.

• Allowing controllers to continue to operate properly without regard to the action of the other
controllers’ occasionally conflicting objectives. Excepting the niceties of controller tuning, each
controller can thus be positioned and commissioned independent of interactions with its neighbors.

This concept automation generalizes many standard practices, such as anti-windup and blend pacing, in a
single Intent model.
                                                
4 This is not a limitation of the C language, but a necessary characteristic of any general purpose language, designed to allow
its writers to express arbitrary programs, dealing with arbitrary data forms in a predefined notation.
5 A Primary Regulation or Constraint control role, a more complex Multivariable Blending or Decoupling role, or a
Secondary Feedforward or Compensation role.
6 For example, the notation refers to the control Variables alone, relying on the underlying relationships to distinguish the
roles of measurements and setpoints, implicitly.
7 The Degree of Freedom path addressed here represents the progression of controlled variables taken in a typical cascaded
control structure, from a Primary variable, through successive Secondary variables, to the final manipulated actuator or valve.
It represents a progression of allocations of measured variables leading to a final manipulated variable, which imposes the
single Degree of Freedom utilized by the path. Any constraint controls introduced in that path change the path when they
become active, replacing the more Primary variables by the Constraint variables.
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In the example loop expression, T100REGULATE P100HICONSTRAIN F100REGULATE V100 (which is
conventionally expressed in the Figure 7 cascaded loop diagram):

• T100REGULATE represents the regulation of T100 by manipulating the downstream variable (the setpoint
of F100).

• P100HICONSTRAIN represents the high constraint control of P100 by overriding (when necessary) the
manipulation (of F100).

• F100REGULATE represents the regulation of F100 by manipulating the valve V100.

The notation abstracts the representation of well-understood standard practices for implementing
cascaded control loop structures. The REGULATE and HICONSTRAIN Idioms are each implemented by
PID controllers; the distinct names disambiguate the distinct Intents. The interpretation of the statement
distinguishes the underlying roles of measurements, actuators, and setpoints, without requiring their
explicit reference. Its linear form not only permits easy distinction of appropriate from inappropriate
usage, but also actually prevents the kind of looped back cascaded structure shown in the Introduction. It
easily supports the distinguished use of measurement and actuator variables.

Not only is the control structure easily compiled from such a form, but appropriate operator interface
displays could also be compiled, as illustrated in Figure 8.[2] Such an interface would be more than a
compilation of the individual controller faceplates; it would capture the current operating modes and
override conditions as indicated by shading the inactive Constraint controller faceplate and drawing
though the connection between Primary and Secondary controllers. The compact notation has other
advantages, such as allowing the expression of continuous controls to be merged with all of the
traditional computer language practices.

ON THE DISTINCT NAMING OF INTENTS
Effective Intent notation critically depends on the use of Intent names that are both meaningful and

appropriately general. This can be illustrated with the Idioms. The Idiom name is a general operator
symbol that must lend itself to general use. This permits a system to solve many applications with the
fewest possible distinct concepts. At the same time the Idiom name must reflect an Intent that the user
can immediately distinguish from other distinct Intents.

Furnace combustion fuel/air mixing control illustrates the issues nicely. Figure 9 shows the typical
cross-constrained fuel and air control loops. But this decomposition does not provide a clear statement of
the Intent, which is: to ensure that the fuel is never allowed to accumulate, as a safety hazard, in excess
of the air. The obscurity is worsened when the elements of the technique are mixed with other
constraints and controls. Thus a distinct Intent module, named like Combustion Control, is needed to
draw the reader’s attention to the special flavor (and hide the implementation detail). Of course this
doesn’t adequately name the generalization of this technique, which is used in other contexts where it is
unsafe for one component in a blend to accumulate un-reacted in excess. While process control people at
least recognize the technique and generalize its use appropriately, a generalized name like Safe-Blend
would perhaps be clearer, at the same time matching hokey industry-naming traditions.

A similar issue arises with the advanced multivariable controls, currently going under some variation
of the name Predictive Control. On the face of it, these techniques would clearly embody the Intent
structure in their objective and constraint functions. But the dependence on a colorless generalized
mathematical constraint modeling structure tempts the user to use tricks to accomplish constraint
conditions (like the above Combustion Control) which would otherwise be expressed more clearly by
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specialized Intent specific techniques. In this case, the monolithic combination of multiple, independent,
user-constraints also confuses any reader of the application documentation (unless separate
documentation spells out the real goals).

The problem is readily apparent in the related difficulties seen in designing meaningful operator
interfaces for such controls. Let it be said: this has nothing to do with the operator’s lack of
sophistication; the operator’s requirement and perspective are much more fundamental to the application
than the mathematics. These designs would be clarified by classification of Predictive Control usages
into more application meaningful groups and decompositions, in terms of their distinct constraint usage.8

They could then be taught as distinct applications to their design engineers, and tailored for clearer
operation. As above, this classification could lead to higher levels of “artificially intelligent”
configuration, operation, and display.

LOGICAL CONTROLS
Logical controls also operate with continuous time data. The major difference between normal

continuous control and logical control is the different data type and the absence of traditional feedback
control. Logical controls still follow a Degree of Freedom path from some Primary command switch
state, through a progression of override constraint checks and fanouts, to the final set of contacts which
may power a motor or other process control support machine. They could be the basis of a set of Logical
Idioms. However, the field has not developed that kind of practice. In this case, the language[5] uses
simpler mechanisms to support Intent at a different level.

Traditional computer languages use Boolean True/False or 0/1 values for representing discrete data.
Nothing could be more destructive of the readability of application programs. The proposed language
replaces these with multi-valued States: START/STOP, OPEN/CLOSED, ON/OFF/HOLD. The Intent
and meaning of the different States is thus spelled out in a manner consistent with the current level of
practice. Computer languages have taken on the enumerated data type, which is similar except for being
computationally tied to integers.

The proposed language uses truth tables and variant ladder diagram forms to represent the computation
without compromising the non-numeric nature of the computation. These forms do not add to the
expression of Intent, but they allow easier following of cause and effect between the different States and
Events in its implementation.

SEQUENCING
A still more basic form of computation is Sequencing. Unlike continuous control, the implementation

of sequencing and its underlying Intent are usually clearly related to each other. For this kind of
application, a subroutine-like capability,9 defining higher level tasks in terms of sequentially executed
lower level tasks, provides a good basic Intent notation. There are variations of sequencing which lend
themselves to improved notation, distinguishing basic sequencing from:

• The execution of parallel paths.

                                                
8 This would not require that the Intent documentation (or even the associated operator interface) map one to one into the
Predictive Control implementation. Some form of compiler between Intent statement and implementation would provide any
needed implementation discipline.
9 But dealing in real time sequencing rather than computation.
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• The execution of alternative paths.

The Figure 10 example with its text and embedded Sequential Function Chart show this. There are
other sequencing forms as well as more general forms, which become important if one wants to cleanly
integrate other forms of control into sequencing. The language includes:

• Looping.

• Continuous Operation.

• State Driven Operation.

For batch operation there is a NAMUR driven dream called a grundoperation which would surely meet
the earlier criterion of preventing inappropriate usage. This is a sequenced element, which has
predefined invocation prerequisites. A fully supported grundoperation would disallow its own initiation
unless all required sequenced elements had already been executed and all required states reached.

ONE MORE CASE: A THREE LEVEL SMART SENSOR PROTOCOL
As a final example of the value of Intent Modeling: consider the problem of providing effective

communication of Smart Sensor data, without multiplying the resulting data complexity. A Smart Sensor
should provide the user with compensated measurement data,10 but also provide notification of actual
and incipient failure information in the most helpful way. The current tendency is to generate complex
maintenance related failure data that just multiplies the information overload already provided to the
operating people.

Consider the Smart Sensor by analogy with what would be expected from a smart person. Consider a
field operator back with a set of obscure but operationally important symptoms about the state of a
sensor (meaningful perhaps to the maintenance personnel). Suppose that operator rambled on without
telling the board operator in simple terms how the sensor state affected the continued operation. Such a
person would not be considered a smart or helpful person. So it is with the sensor. Smart Sensors have
much more to offer if they make effective use of Intent Modeling based sensor validity coding.

This can be accomplished within a three level Validity Code Model:[6]

• Symptoms (Sensor Physics and Situation). The bottom level consists of the codes used to communicate
precise device failure modes. The codes thus communicated have meaning only for the purposes of
device maintenance.

• State (Device Utility). This is a set of sensor (or actuator) states and protocols reflecting the application
useful state of the sensor in terms that are independent of device type. The device designer (or
sometimes the application designer) would be responsible for defining the translation of the bottom
level device specific codes into these more general application related States. There are at least two
distinct categories of these States:

� (Data) Validity. These States reflect on the validity of the data, its accuracy, repeatability, noise free
character, etc.

� (Sensor) Health. These States reflect on the continued viability of the device itself, independent of the
current data validity.

• (Application) Role (Requirements). This represents a set of standard, general, application
characterizations or roles. They allow the user to classify his application in general ways suitable for

                                                
10 Perhaps with greater compensation for a wider range of circumstances than with a “dumb” sensor.
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the comparison to the device utility States. In general, a Role defines which device States can be
supported without changed control, and which changes in a control regime must be taken in the face of
any change in Device State. Device failures would always initiate maintenance action. The Role
includes two further categories:

� Function. This Role category defines the application requirements for Data Validity.

� Criticality. This Role category defines the application requirements for Sensor Health.

For example, Accurate data (a Validity State) is needed for Primary Control (a Function Role)
functions, which affect product quality. But Repeatable data (a Validity State) is adequate for Secondary
Control (a Function Role) functions, such as secondary cascaded controllers or feedforwards, which will
be corrected by the affects of Primary Controls.

Similarly, Critical loops (a Criticality Role) cannot be operated at all without measurements; these
require Unqualifiedly Healthy sensors (a Health State). A Smart Sensor validity code would include a
matched set of these States and Role characterizations. These would permit the full automation of sensor
failure responses designed to minimize unnecessary downtime or unacceptable crises. The automation
would become effective once the application designer used the Application Role to define his
application Intent.

CONCLUSIONS
Process Control is in a stage of awkward standardization, rushing to follow the digital world. This

standardization can be premature if it misses important techniques, which would better capture our
applications. Important to the advance of Process Control practice, as with any software, are practices
that make our applications broadly readable without limiting their flexibility. Key to this is the ability to
program application information models to transparently capture Intent. The concept of Intent is
dependent on the application domain. Nothing can guarantee that engineers naturally document
applications. But the absence of appropriate application languages will guarantee failure. Any coherent
engineering practice lends itself to an underlying Intent structure. Surfacing this structure is a critical part
to making that practice more generally teachable and accessible.
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Figure 1. Levels and Parallel Support

Process Business Goals
Market Goals

Processing Goals
Process Control Goals

Software Goals

Software Programming
      

Operational
Scheduling

Process

Sensors / ActuatorsSensors / Actuators

Process

Maintenance

Control Hardware

Systematic
Controls

Sequencing
and Recipe

Support

Continuous
Control

Logical
Control O

perational
S

upport

Manual Control +
Supervision/

 

Supervisory
O

peration

Order Entry
Inventory
Controls

Planning
Scheduling
on Several Levels

Human Interface (Keep Things Running)

Standard
Recipes

& Bills of Materials

P
roduction

M
anagem

ent

Figure 2. Physical Science Leveling

Thermodynamics

Statistical Mechanics

Quantum Theory

Figure 3. Subroutine Hierarchy

  

Figures



11

Figure 4. Sensible and Absurd Cascading
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Figure 5. Algebraic Syntax

ax + by + cz = 0
y = ax2 + bx + c

E = mc2

sin(2a)=2sin(a)cos(a)
F = ma

D / F = (zi - xi) / (yi - xi)

Figure 6. C Code

while(isxdigit(command[i]))   {
  c = command[i++];
  if(c>=’0’ && c<=’9’) c-=’0’;
    else if(c>=’A’ && c<=’F’) c+=(10-’A’);
      else if(c>=’a’ && c<=’f’) c+=(10-’a’);
  bf = 16*bf+c;
  }
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Figure 7. Complex Constraint-Switched Loop
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Figure 9. Fuel/Air Controls
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Figure 10. Semi-Graphic Text and SFC Sequencing
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